Multidimensional Adaptive Relevance Vector Machines for Uncertainty Quantification

نویسندگان

  • Ilias Bilionis
  • Nicholas Zabaras
چکیده

We develop a Bayesian uncertainty quantification framework using a local binary tree surrogate model that is able to make use of arbitrary Bayesian regression methods. The tree is adaptively constructed using information about the sensitivity of the response and is biased by the underlying input probability distribution. The local Bayesian regressions are based on a reformulation of the relevance vector machine model that accounts for the multiple output dimensions. A fast algorithm for training the local models is provided. The methodology is demonstrated with examples in the solution of stochastic differential equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation

This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...

متن کامل

Identification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines

In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...

متن کامل

Learning with Uncertainty – Gaussian Processes and Relevance Vector Machines

The Relevance Vector Machine (RVM) introduced by Tipping is a probabilistic model similar to the widespread Support Vector Machines (SVM), but where the training takes place in a Bayesian framework, and where predictive distributions of the outputs instead of point estimates are obtained. In this paper we focus on the use of RVM’s for regression. We modify this method for training generalized l...

متن کامل

Support Vector Machines for uncertainty region detection

A new technique for the detection of the uncertainty region in classification problems is presented. The core of the method is the determination of the best supporting hyperplane for convex hulls of sets of points in a multidimensional input space. To this aim a modified version of the algorithm for the Generalized Optimal Hyperplane is shown to be effective. As in the Support Vector Machine ap...

متن کامل

Relevance Feedback for Content-Based Image Retrieval Using Support Vector Machines and Feature Selection

A relevance feedback (RF) approach for content-based image retrieval (CBIR) is proposed, which is based on Support Vector Machines (SVMs) and uses a feature selection technique to reduce the dimensionality of the image feature space. Specifically, each image is described by a multidimensional vector combining color, texture and shape information. In each RF round, the positive and negative exam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2012